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Abstract

Inattention and imperfect information bias behavior toward the salient and immediately
visible. This distortion causes costs to individuals, the organizations they work in, and soci-
ety at large. We show that an effective way to overcome this bias is making the implications
of one’s behavior salient in real time, while individuals can directly adapt. In a large-scale
field experiment, we gave participants real-time feedback on the resource consumption of
a daily, energy-intensive behavior (showering). We find that real-time feedback reduced re-
source consumption for the target behavior by 22%. At the household level, this led to
much larger conservation gains in absolute terms than conventional policy interventions
that provide aggregate feedback on resource use. High-baseline users displayed a larger
conservation effect, in line with the notion that real-time feedback helps eliminate "slack" in
resource use. The approach is cost-effective, technically applicable to the vast majority of
households, and generated savings of 1.2 kWh per day and household, which exceeds the
average energy use for lighting.The intervention also shows how digitalization in our every-
day lives makes information available that can help individuals overcome salience bias and
act more in line with their preferences.

Keywords: salience of information, digitalization, real-time feedback, green information sys-
tems, decision making, energy conservation, water conservation, environmental behavior, ran-
domized controlled trials
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1 Introduction

Living up to our ideals can be challenging. Most people want to protect the environment,

lead healthy lives, or manage their business unit effectively - yet often fail to do so in their

everyday lives. Part of the discrepancy between individuals’ aspirations and their daily be-

havior can be attributed to salience bias at the moment of decision making, some features of

a decision are often vivid and perceptible, while others are diffuse and difficult to quantify.

This creates a bias in favor of the salient (Kahneman et al. 1982, Bordalo et al. 2012, Allcott

and Wozny 2013), leading individuals to make suboptimal decisions, both in their profes-

sional and private lives. For instance, the delicious smell and taste of a cake is often more

salient than the calories and nutritional aspects of that craving, prompting many individuals

to let their dietary resolutions slide. In the corporate world, managers often tend to ne-

glect the cost and duration of ancillary business processes like compliance, or administrative

tasks, as these processes are much less visible to them than the organization’s core business.

This often results in costly planning errors (Hirshleifer 2008). Salience bias can also cause

present-biased behavior if immediate rewards are more visible than the long-term costs of

a behavior (Milkman et al. 2008, Loewenstein 1996). Likewise, despite heightened concern

about privacy issues among the general public (European Commission 2011), many indi-

viduals hardly hesitate to disclose sensitive personal data to smart phone applications and

online services that provide immediate benefits in terms of fun or convenience (Kehr et al.

2015). As Kehr (2015) shows, a more salient presentation of privacy aspects at the moment

of decision-making can mitigate the bias towards perceived benefits and remind consumers

of the risks involved in sharing sensitive data. In general, salience bias compounds a variety

of problems including insufficient risk management, overspending, and unhealthy lifestyles

âĂŞ- with costly consequences for individuals, organizations, and society at large.

One domain that is particularly prone to salience bias is resource consumption: the ben-

efits of energy or water use are usually immediate and perceptible, whereas the negative

implications in terms of costs and emissions from energy generation are typically elusive and

difficult to gauge for the individual. For example, while the pleasant sensation of a warm

shower is immediately felt, few individuals are aware of how much energy and water this

action involves (Attari et al. 2010, Attari 2014). Although many people indicate that they are

willing to make sacrifices to protect the environment (Diekmann et al. 2009, Naderi 2011),

the asymmetric visibility of immediate benefits vs. elusive resource use makes conservation

a particularly challenging endeavor. As a result, even those individuals who want to use nat-

ural resources efficiently and avoid waste, or try to purchase ecologically friendly products,

often do not follow through with their intentions (Gutsell and Inzlicht 2013). Even worse,
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individuals engage in ineffective conservation efforts while believing that they are doing their

part (Attari et al. 2010, Attari 2014, Delmas and Lessem 2014) – at the expense of less ob-

vious measures that could create a meaningful impact (Gardner and Stern 2008). The lack

of salience of resource use may be one of the reasons why environmental attitudes are poor

predictors of resource consumption (Gatersleben et al. 2002, Kollmuss and Agyeman 2002),

contributing to the attitude-behavior gap widely discussed in psychology and related fields

(Ajzen and Fishbein 1977, 1980). Correcting salience bias in environmentally significant de-

cisions would benefit not only individuals, but also organizations and society. Energy use is

an important cost factor in industry, a major geopolitical asset, and emissions from energy

production cause health problems and contribute to global warming, which compound a wide

variety of economic, social, and political challenges.

In this paper, we attempt to directly address salience bias in the context of resource con-

servation. Our target behavior is showering: in the course of less than five minutes, a typical

individual in our sample uses 45 liters of hot water, which requires on average 2.6 kWh to

heat it up (for comparison, the average household in Switzerland and in the European Union

uses 1.0 kWh for lighting per day (Prognos AG 2015, Lapillonne et al. 2015) and a mod-

ern refrigerator uses 0.63 kWh per day (Michel et al. 2015)). Thus, showering is a highly

resource-intensive behavior. In a randomized controlled trial with 697 households, we pro-

vided participants with smart shower meters. The devices have the ability to provide real-time

feedback on energy and water consumption in a simple and intuitive way, while and where

individuals engage in the behavior. The devices are attached below the handle of the show-

erhead, making the display with the feedback easily visible for users while they take their

shower.

Our intervention differs from existing feedback interventions. A widely-used policy is to

provide feedback about one’s past consumption, such as periodic “home energy reports”.

These reports contain historical electricity consumption data, convey social norms through

comparisons with homes in the neighborhood, and provide energy conservation tips (Allcott

and Mullainathan 2010). Home energy reports reduce electricity consumption by roughly 2%

(Allcott and Mullainathan 2010, Costa and Kahn 2013, Allcott and Rogers 2014) or 0.5% of a

household’s energy use 1. Similar reports on household water use yield reductions in water

consumption between 0 and 5% (Ferraro and Price 2013, Mitchell et al. 2013, Bernedo et al.

2014, Schultz et al. 2014, Brent et al. 2015). Thus, the treatment effects are not larger for

feedback on household water use than on aggregated electricity consumption. A potential

explanation for the moderate effect size of those reports might be that by providing feedback

1Note that electricity use represents only 24% of the residential final energy use in Europe (European Environment
Agency 2015), which also comprises residential oil and gas consumption.
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on past resource consumption, they only enable consumers to change future behavior; yet in

many cases, good resolutions fall prey to procrastination and relapse (Norcross and Vangarelli

1988).

Other behavioral interventions use smart meter data to provide timely feedback about

aggregate electricity consumption through in-home displays or web portals. Recent electricity

smart metering trials report treatment effects between 2 and 5% (McKerracher and Torriti

2013, Buchanan et al. 2015, Degen et al. 2013). A meta-review on smart metering studies,

however, qualifies the savings induced by in-home displays as "insubstantial" (Buchanan

et al. 2015, p. 94). In all cases, the feedback information is aggregate and not delivered at the

point where the decision is being made, blurring the link between the current action and its

impact on resource consumption. Breaking electricity use down into six categories (lighting,

HVAC, fridge, dishwasher, other kitchen, plug loads) already increases conservation effects to

8% of electricity use (or 2% of household energy use), when combined with information about

the environmental and health impact of energy consumption (Asensio and Delmas 2015).

By contrast, our intervention provided individuals with real-time feedback on a specific

behavior while and where they engaged in it. This approach allowed them to directly take

action if the status of the ongoing behavior was not in line with their preferences (Kluger

and DeNisi 1996). We find a statistically significant and quantitatively very large effect of

the intervention: real-time feedback on a specific behavior (showering) reduced the resource

consumption of that target behavior by roughly 22%. Remarkably, the intervention yielded

its full treatment effect from the first instance the feedback was being provided. Hence, the

intervention did not require a frequent or repeated exposure of the individuals to unfold its

potential. In addition, we do also not observe an attenuation of the treatment effect: the

impact of the intervention was stable over the two-month study period.

While it is interesting to note that our intervention caused a much larger relative shift in

the target behavior than studies providing aggregate feedback, the relevant comparison for

policy purposes are the aggregate savings in energy and carbon emissions at the household

level. For the average Swiss household (2.1 persons), the energy savings of our intervention

amount to 1.2 kWh per day, simultaneously curbing daily water consumption by 20 liters.

Putting the effects into perspective, the savings exceed the daily electricity use for lighting

(1.0 kWh) of the average Swiss household (Prognos AG 2015) and are equivalent to the daily

consumption of two typical European refrigerators (Michel et al. 2015). Our setting allows for

a comparison with conservation effects of existing feedback interventions, since all the partic-

ipants had previously completed an electricity smart metering study (Degen et al. 2013). The

average conservation effect in the electricity smart metering trial was 0.2 kWh per household
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per day - a result that is in line with the findings of most comparable smart metering trials

in Europe (Schleich et al. 2013, McKerracher and Torriti 2013). These savings translate into

a 1.0% reduction in the participants’ household energy use. By contrast, the 1.2 kWh reduc-

tion on the target behavior in our study reduced their household energy use by 5.0%. Thus,

providing real-time feedback on a specific behavior created an energy conservation effect that

was five to six times larger than providing aggregate feedback about a broader measure of en-

ergy or electricity use to the same population. This is remarkable given that the narrow focus

on a single behavior focus left the individuals only with one margin of adjustment (shower-

ing), rather than the whole set of behaviors targeted in previous studies providing aggregate

feedback.

We also examine whether real-time feedback enhances awareness of the resource use,

as this is a necessary condition to reduce salience bias. Interestingly, studies providing

aggregate consumption feedback could not find evidence for an improved awareness of one’s

energy use (Mitchell et al. 2013, Degen et al. 2013). By contrast, we find strong improvements

of estimated water use among the individuals who received real-time feedback, whereas the

control group’s awareness did not change over the study period.

The large behavioral response also allows us to examine whether the reaction to real-

time feedback differs in subsamples in interesting ways. Previous studies have found that

conservation effects are larger for high-baseline users than for users who start out with a

more efficient resource use (Allcott 2011, Ferraro and Price 2013, Degen et al. 2013, Allcott

and Rogers 2014, Schultz et al. 2014, Brent et al. 2015). In addition, previous research

suggests that stronger environmental attitudes (Abrahamse et al. 2005, Delmas and Lessem

2014) and affinity to quantify behavior (Swan 2013) should lead to a stronger conservation

effect in response to real-time feedback.

We find a very large and robust interaction of baseline use with real-time feedback. For ev-

ery one-kWh increase in baseline consumption, the conservation effect of real-time feedback

increased by 0.32 kWh, leading to a much larger behavioral response for high-baseline users:

while the average user displayed a conservation effect of about 0.56 kWh, the top quintile of

baseline users saved almost three times as much (1.47 kWh).

A stronger environmental attitude and a stronger affinity to quantify behavior also tended

to create a larger conservation effect. Both interaction effects are quantitatively meaningful.

For instance, individuals who scored in the bottom quintile of environmental attitude dis-

played a conservation effect of 0.5 kWh – still a large effect. Individuals in the top quintile

saved 0.75 kWh, almost 40% more.

Overall, the results from the subgroups shed some light on possible mechanisms behind
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the effect of real-time feedback on resource conservation. The result that high-baseline users

respond more to the treatment is routinely interpreted as eliminating previous slack that is

hypothesized to be larger in the consumption of high-baseline users.2 Yet, this raises the

question where this slack originates, and salience bias provides a simple and straightfor-

ward interpretation: inattention and imperfect information may contribute to high resource

use that is not rooted in a strong preference for it. Real-time feedback directs attention to-

wards it and helps individuals eliminate this slack – more so when slack is higher. Thus,

real-time feedback can help individuals make choices more closely aligned with their innate

preferences. The fact that both, a stronger environmental attitude and stronger affinity to

quantify behavior, predict a larger conservation effect is consonant with this interpretation.

Furthermore, we also find that differences in these preferences produce larger differences in

conservation effects when baseline use is high, i.e., when "slack" in baseline use is particu-

larly large. While ultimately, our data do not allow us to rule out that other mechanisms may

simultaneously also play a role, we interpret the results as consistent with the explanation

that making resource use visible in real time decreases salience bias.

The properties of the behavioral response we uncover also sets our intervention apart from

other policies. Regulatory approaches (e.g., banning high-flow showerheads) limit individu-

als’ freedom of choice and are subject to the standard critique of economics that the imposed

change in behavior does not take into account individual differences in costs of changing

behavior (see, e.g., Frank and Glass 1991)3. Providing real-time feedback demonstrably does

not fall into this category, as we show that individuals with a stronger preference for environ-

mental protection exhibit a stronger conservation effect – as efficiency dictates. Interestingly,

our study also shows that individuals prefer to cut the shower short, rather than adjusting

the flow rate of water, thus highlighting another inefficiency of current policy proposals in

this domain. Another often discussed policy measure are price increases through environ-

mental levies (Jessoe and Rapson 2014, Wolak 2011). Yet, households typically exhibit low

sensitivity to price increases in resource consumption (Levitt and List 2009, Azevedo et al.

2011, Jessoe and Rapson 2014, Bolderdijk et al. 2013) – which may in part also be due to

salience bias. Similarly, information campaigns (e.g., energy conservation tips) have proven

largely ineffective to foster resource conservation (Abrahamse et al. 2005). Our results also

raise the scope for complementarities between better control over consumption through real-

time feedback and pricing, as consumers may be able to make better-informed choices when

provided with real-time feedback. More generally, our study suggests that real-time feedback

2We are grateful to the associate editor and a reviewer to suggest to us this interpretation.
3In the environmental context, these measures have been criticized as rigid and costly (Kolstad 2010) and often-

times they face strong public resistance (Power 2011, Ball 2009)
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may be a potent remedy against salience bias in other domains of behavior, and inspire useful

policies for individuals, firms, and governments alike.

The remainder of this paper is structured as follows: Section 2 presents the experimental

design, measurements and survey constructs we use in this study, and explains the recruit-

ment strategy. Section 3 lays out the behavioral results and probes into the psychological

mechanisms behind the observed treatment differences. Section 4 concludes the paper with

a discussion of the results and presents implications and potential applications in several

domains.

2 Experimental setup

2.1 Implementation of the behavior-specific real-time feedback

In our framed field experiment (Harrison and List 2004, List 2011), we provided individuals

with real-time feedback on the resource consumption of a specific behavior while they en-

gaged in it. Thus, we made resource consumption salient while individuals could directly

adapt their behavior in response to the real-time feedback. We chose showering as a highly

energy-intensive activity: water heating is the second-largest residential energy end use in

Europe and in the U.S., accounting for 14-18% of the average home’s energy use (eia 2013,

BAFU 2013). The average shower consumes 2.6 kWh of energy in only four minutes (see SI

Section 1.4) - with the same amount of energy, one could power nearly 2,300 (!) compact

fluorescent light bulbs (17 W each) over the same period of time.

We measured and recorded data on individual showers with the amphiro a1 smart shower

meter depicted in Figure 1. The device is mounted by the users between the shower hose and

the hand-held showerhead (which more than 95% of showers in Europe have). It features a

liquid crystal display, and the feedback is easily visible to individuals while they shower. The

device calculates the lower bound of energy use based on the standard engineering formula

for heat energy (Q = m ∗ cp ∗ ∆T , with heat energy Q, mass of water m, heat capacity cp, and

∆T the difference between the measured water temperature and cold water temperature).

Average energy losses are taken into account in the evaluation process based on a detailed

breakdown of residential water heating systems in Switzerland (see SI Section 1.4 and Table

S5 for details).

The display harvests the energy required for its operation from the water flow: it activates

as soon as the water is turned on and switches off three minutes after the end of a shower

(Tiefenbeck et al. 2013). This eliminates the need for batteries and allows tracking behavior

over extended periods of time. This, however, comes at a cost: while the device can measure
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Figure 1: The feedback and measurement device used in this study. Notes. On the left: a
snapshot of the feedback displayed by the smart shower meter. On the right: the device
installed between the showerhead and shower hose.

the duration of showers (and of interruptions of the water flow during showers), the absence

of a battery implies that the device is unaware of the global time; showers are thus recorded

in temporal order, but without a timestamp. Therefore, our unit of analysis is a shower, not a

day as commonly used in other studies. We will return to this point in Section 3. The shower

meters were deployed for two months and recorded energy and water consumption, average

water temperature, interruptions, and duration of each shower (see SI Section 1.1 for a more

detailed description).

2.2 Experimental conditions

We implemented three experimental conditions. In the real-time condition, the device dis-

played water use in tenths of liters. Thus, it provided individuals with objective and easily

understood feedback on their resource consumption during a shower4. The device also dis-

played water temperature in degrees Celsius, energy consumption in kWh, an energy effi-

ciency rating (ranging from A to G), and a polar bear animation (i.e., an ice floe that progres-

sively shrinks as the amount of energy used increases) (see SI Section 1.1 for a more detailed

description of the elements displayed).

In a second condition, the real-time plus past feedback group, the display showed all these

elements and, in addition to that, the total amount of water used in the previous shower.

In a two-person household, this may add an element of pressure, as the impact of one’s

4Note that liter (not gallon) is the standard volume measurement unit in Europe.
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behavior can be seen by the other person. In fact, several earlier behavioral interventions in

the energy context (using aggregate feedback on past behavior) have found an explicit role of

psychological pressure (Schultz et al. 2007, Gromet et al. 2013, Delmas and Lessem 2014),

induced by peer pressure or guilt (Schultz et al. 2007, Gromet et al. 2013, Delmas and Lessem

2014). Psychological pressure has been found to be an important driver of prosocial behavior

in other domains, such as charitable donations or voting (DellaVigna et al. 2012, Gneezy

et al. 2012, 2010, Gerber et al. 2008, 2010). The visibility of one’s resource consumption to

another household member might be particularly relevant, as several studies on consumer

decisions have shown that close peers and family members exert a particularly large influence

on individuals’ decisions (Bearden and Etzel 1982, Loock et al. 2012, Poldin et al. 2016).

Note that the perception of the feedback displayed in the two treatment conditions is sub-

jective: in general, individuals’ personal goals and standards define whether the resource

consumption displayed is perceived as a positive result (within the individual’s standard) or

as a negative outcome (exceeding that standard). The discrepancy between feedback and in-

dividuals’ standard has been identified as a fundamental source for motivational processes

(Kluger and DeNisi 1996): while knowledge of positive results can reinforce and encourage

behavior, knowledge of negative results can be seen as a punishment and discourage behav-

ior (Karlin et al. 2015). In our study, neither the smart shower meter, nor the accompanying

materials (e.g., user manual) conveyed social comparisons with other individuals (e.g., aver-

age energy or water consumption per shower) that could serve as a clear alternative reference

point (except for the information on the previous shower in the real-time plus past feedback

group).

In the control condition, we supplied no feedback on energy and water consumption: the

device displayed only water temperature. Once the water reaches the temperature desired by

the user, water temperature is rather static in nature in the course of a typical shower. In

theory, one could also envision a ’pure’ control group without any feedback displayed. By dis-

playing water temperature from the onset of every shower, control group participants are also

aware that the device is correctly installed and measuring data, just like the treatment condi-

tions. Furthermore, from a practical point of view, it would be difficult to ask participants to

install a pure measurement device that does not deliver any benefits to the user: without any

information shown, participants might think the device is broken, and they might be more

likely to drop out of the study, which could introduce attrition bias in the control group.

To measure all participants’ water use under identical conditions, the intervention phase

with feedback in the two experimental conditions was proceeded by a baseline phase during

which only the water temperature was displayed to those two groups as well – just like in the
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control condition.

Control group manuals explained that water temperature is an important factor to influ-

ence energy consumption. Treatment group manuals stated that the device would display

only water temperature during an initial familiarization phase. After that, the device would

automatically start to display energy and water consumption as well. Neither the purpose

of the initial period as a baseline phase, nor its duration (ten showers) was disclosed to the

participants. All materials sent to the participants (invitation letter, survey invitations, user

manual) framed the study as an energy efficiency study (water conservation is less of a policy

priority in water-rich Switzerland). The materials highlighted the large amount of residential

energy consumed by water heating ("Water heating is the second largest energy end use in a

typical household.") and that the smart shower meter would help users to keep an eye on their

energy consumption. The accompanying user manuals explained that the device measures

water consumption and temperature and calculates energy consumption.

2.3 Sample

Participating households were recruited among a larger sample of 5,919 residential customers

of the Swiss utility company ewz. All of them had access to the Internet and had previously

participated in an electricity smart metering study (Degen et al. 2013). At the end of that

study, they were told that they would (unconditionally) receive the smart shower meter am-

phiro a1 as a thank-you gift. The size of the study had been limited upfront to 700 households

for cost and implementation reasons. Due to memory constraints of the smart shower me-

ter, only one- and two-person households could be admitted. As a result of that technical

restriction on household size, none of the households included children or teenagers. In

order to participate, individuals interested in the study needed to fill out an online survey

(see Section 2.4) and agree to share their shower data with the researchers. Among those

registered who fulfilled the qualification criteria (the number of household members in par-

ticular, see SI Section 1.2 for details), participants were chosen on a first-come-first-served

basis. Our sample of participants has thus actively opted into our study. As in any other

study with an opt-in design, this raises the question whether the results might be subject to

potential biases of self-selection. Therefore, in a first step, we compared the demographics of

our study participants with all 3,989 one- and two-person households who had participated

in the electricity smart metering study (the restriction of our study to one- and two-person

households was for technical reasons; therefore we need to compare our sample with that

corresponding reference group and not with all households). Table S1 of the SI displays the

descriptive statistics. As the results of the t-tests show, none of the t-test statistics indicates
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a significant difference between participants and non-participants at the 0.05 level. Thus, the

subset of participants who participated in our study does not differ in its demographics from

the corresponding group of households that had participated in the electricity smart metering

study. In a second step, we compared our study sample with national statistics and a Swiss

environmental survey that had been conducted with a representative sample of households

(Diekmann et al. 2009). Compared to the general population of Switzerland, our sample is

younger more educated, but also significantly less environmentally friendly (p < 0.01, see SI

Section 1.2 and (Diekmann et al. 2009)). Given the metropolitan service territory of ewz, the

more urban lifestyle of our sample compared to the average Swiss citizen is in line with the

utility company’s general customer base. Out of the initial 697 households, shower data are

available from 636 devices and a complete set of all surveys from 620 households. Among

the 61 households whose shower data are not available, 37 did not send back their shower

meter or had dropped out of the study for various reasons (including unrelated events like

hospitalization or breakup of partnerships), and 24 datasets from devices that were defective

or had the wrong software installed could not be used.

2.4 Survey data

The measurement data were supplemented by surveys administered before and after the

field experiment. The pre-experimental survey collected socio-demographic data (e.g., age,

gender, income, education, housing situation), information on the fuel type used for water

heating, whether their utility costs were included in the rent, personality factors (HEXACO

inventory) and environmental attitudes (using the same wording and 5-point Likert scale

as the nationally representative sample by (Diekmann et al. 2009)). Participants were also

asked to estimate their water consumption per shower and to indicate to what extent they

intended to conserve energy and water with the smart shower meter and in general. The

post-experimental survey mainly consisted of 5-point Likert scales assessing participants’

perception of the smart shower meter: to what extent they a) understood and b) took interest

in the different elements of feedback displayed by the smart shower meter, and whether they

had encountered any usability issues. Again, participants were asked to estimate their water

consumption per shower. Furthermore, the post-experimental survey collected self-reported

behavioral responses to the intervention: self-reported changes in shower behavior, level of

attention paid to the device in the previous two weeks, and self-set goals. For further details

on the survey data collected, see SI Section 1.3.
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2.5 Descriptive statistics and randomization checks

Table 1 shows the group means for key socio-demographic variables, environmental attitude

(rated on a 5-point Likert scale, cf. SI Section 1.3), and means of the key shower characteris-

tics during the baseline period, both for the study sample combined and for each experimental

condition separately. The standard deviation is reported below in parentheses. In addition

to the descriptive statistics, the fifth column contains the test statistics of the randomization

checks performed on these key variables: We conducted a two-sided ANOVA to verify whether

the randomization has successfully produced balance on observable key characteristics be-

tween the three conditions before the onset of the treatment5. Column 5 of Table 1 contains

the p-values of the F-tests on the (two-sided) hypothesis that the correlation with the con-

dition T1 and T2 is zero. As the test statistics show, the randomization produced balanced

groups on all these variables.

Table 1: Randomization checks

Variable Full sample Control Real-time Real-time F-statistics
group feedback + past FB (p-value)

Household size (persons) 1.53 1.54 1.52 1.54 0.08
(0.50) (0.50) (0.50) (0.50) (0.93)

Age (years) 46.3 46.6 46.4 45.8 0.17
(14.4) (14.4) (14.3) (14.3) (0.85)

Fraction of women 0.50 0.50 0.48 0.52 0.66
(0.38) (0.39) (0.39) (0.37) (0.52)

Monthly income (CHF) 8,175 8,059 8,637 7,816 2.17
(3,972) (3,824) (4,218) (3,825) (0.12)

Environmental attitude 3.49 3.38 3.50 3.57 2.27
(0.90) (0.92) (0.88) (0.88) (0.10)

N 601 196 202 203

Mean baseline water 44.8 43.6 44.4 46.1 0.48
use per shower (l) (26.5) (25.4) (24.3) (29.2) (0.62)
Mean baseline energy 2.66 2.59 2.61 2.75 0.46
use per shower (kWh) (1.71) (1.64) (1.57) (1.89) (0.63)
Mean baseline water 36.1 36.1 36.2 36.1 0.06
temperature (◦C) (2.8) (2.8) (2.7) (2.7) (0.95)
Mean baseline shower 246.5 237.5 251.1 250.8 0.77
time (s) (137.6) (126.9) (144.3) (139.9) (0.46)
Mean baseline water 11.0 11.1 11.0 11.0 0.15
flow (l/min) (2.3) (2.4) (2.3) (2.3) (0.86)

N 636 209 215 212

Notes. Descriptive statistics for the full sample and for each group individually. As the
F-tests show, the randomization produced balance between the groups on the key

observable characteristics. Shower data are available from 636 households, survey data
from 620 households. The shower statistics are almost identical when restricting the sample

to the survey takers.

5For that purpose, we estimate the following equation: yi = β0 +β1T1i +β2T2i + εi. In that equation, yi represents
the different dependent variables of interest; T1 and T2 are indicators for the real-time information and real-time plus
past information conditions, respectively.
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3 Results

3.1 The impact of real-time feedback on energy and water consumption

Figure 2 provides descriptive evidence of the effects of the behavior-specific real-time feed-

back. During the baseline period, all three study conditions use roughly the same amount of

energy and water. With the onset of the real-time feedback in shower 11, resource consump-

tion drops sharply in the two experimental groups: energy used per shower is approximately

0.59 kWh lower than in the control group and water use is 9.5 liters lower, amounting to

a reduction of 22% both in energy and water consumption for showering. Importantly, the

treatment effects appear to be persistent throughout the two-month period of the study.

There is no visual tendency for the gap between the experimental conditions and the control

group to narrow.
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Figure 2: The impact of real-time feedback on energy (and water) consumption. Notes. Av-
erage amount of energy used per shower in each experimental condition (left axis). The
right axis reflects the corresponding approximate water use in liters (correlation coefficient of
0.989). Resource use drops by 22% upon activation of the display, and this treatment effect
remains stable throughout the study (p < 0.01, see Table 2).

Figure 3 displays the difference-in-difference estimates for each of the treatment effects

in one-person and two-person households. For each household, we calculate the difference

between the average use during the intervention phase (showers 11 to the study end) and

subtract the mean during the baseline period. Comparing the averages between conditions

allows us to gauge the treatment effects more precisely. The panel shows a mild increase in

13



energy consumption per shower in the control group, and a sharp reduction in each of the

experimental conditions, with the standard-error bars around the means indicating a highly

significant difference between the treatment conditions and the control group for each of the

household types, but not across treatments or household types.
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Figure 3: Difference-in-difference estimate of the treatments for one-person and two-person
households. Notes. Each bar indicates the mean difference in energy use per shower during
the intervention phase compared to energy use per shower during the baseline phase. The
treatment effects are the same for one-person and two-person households. Adding feedback
about the previous shower does not increase the treatment effect. Error bars, mean +/- SEM.
See SI for details.

In order to test this formally, we estimate the model

yit = αi + β1T1it + β2T2it + dt + εit (1)

where our dependent variable yit is the energy used by household i in shower t. We include an

individual fixed effect αi for each household in order to eliminate all variance stemming from

fixed differences in shower outcomes between households. The indicators T1it and T2it are all

zero for the first 10 showers and then take on the value of 1 if household i is assigned to the

real-time feedback or real-time plus past feedback treatment, respectively. We also include
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a shower fixed effect dt to capture time trends in the best possible way. The error term ε

captures any unmodeled effects that are orthogonal to our treatment conditions by virtue of

randomization.Thus, β1 and β2 indicate the difference between the respective experimental

condition and the control group’s energy use per shower.

To examine the stability of the treatment effects, we estimate

yit = αi + β1T1it + β2T2it + γ1T1it · xit + γ2T2it · xit + dt + εit (2)

where xit measures the fraction of the intervention period completed, i.e. xit = (t−11)/(Ki−11)

where Ki is the total number of showers taken by household i (and xit = 0 for t < 11). In this

specification, xit = 0 at shower 11, the first shower in which the treatments are activated.

Thus the interaction term vanishes at shower 11, and β1 and β2 have the interpretation of

being the treatment effect of the respective condition at the intervention onset (shower 11).

By contrast, xit = 1 at the last shower recorded for household i. Thus, γ1 and γ2 measure any

potential change in the treatment effect at the last shower recorded by fitting a linear trend to

the treatment effects. Note that the progress indicator xit refers to the fraction of showers out

of the total number of showers recorded, not absolute time. As explained in Section 2.1, the

smart shower meters record showers in sequential order and the duration of each shower,

but cannot measure time between showers. For that reason, we use energy consumption per

shower as the primary unit of analysis instead of energy use per day.6

Table 2 presents the results. The first column contains the overall treatment effects. The

estimates confirm the visible impression from Figure 2: the large treatment effect on energy

use is statistically highly significant. Columns 3 and 4 estimate the treatment effects sepa-

rately for one-person and two-person households. The results show that the treatment effects

are of similar magnitude for each of the treatments and for both household types. In fact,

for each household type, we cannot reject the hypothesis that the two experimental condi-

tions (real-time feedback and real-time plus past feedback) have the same impact on energy

consumption per shower. We also test whether the treatments have the same impact on both

household types and cannot reject the null hypothesis of identical effects at conventional

significance levels (see bottom rows of Table 2). Against the backdrop that other feedback

studies (using aggregate feedback on past behavior) have found evidence that peer pressure

is a relevant driver of conservation efforts, it is interesting that we find no larger effects in

6In later steps, when calculating the daily or yearly energy savings per household, we take into account the shower
frequency by distributing the Ki showers recorded in a household equally over the two-month duration of the study.
In fact, small errors in that allocation scheme (i.e. whether a shower was in fact taken one day sooner or later)
are inconsequential to those aggregated outcomes. Furthermore, to minimize larger time allocation errors, both the
pre-study and the post-study survey asked participants about extended periods of absence during the study (see
Section 2.3).
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two-person households, in particular in those in the real-time plus past feedback condition, in

which the resource consumption of the previous shower was visible to the next person taking

a shower. Our data do not suggest that the provision of that additional piece of information

would increase the treatment effect.

Overall, the treatment effects are much larger than what conventional interventions using

home-energy reports (Allcott 2011, Allcott and Rogers 2014) or real-time feedback on aggre-

gate electricity consumption (Degen et al. 2013) achieve.

Column 2 of Table 2 presents the results from the tests of temporal stability of the treat-

ment effects. As can be seen, the estimated treatment effects at the beginning of the study

(the estimates of β1 and β2) are virtually identical with the overall estimates in column 1. The

estimates of γ1 and γ2 (the change in the treatment effects over the study period) are small

and insignificant. Thus, there is no evidence that the treatment effect becomes any weaker

over the duration of the treatment: it is just as large in the first shower as it is in the last.

In contrast, existing feedback studies with access to smart meter data do not report similarly

immediate or pronounced drops in consumption, even in the identical sample population

(Degen et al. 2013). This shows that real-time feedback on a specific behavior generates a

response that is qualitatively different: the full treatment effect is realized from the first time

the treatment is active, and the intervention is stable over time.
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Table 2: The main experimental outcomes

All households One-person Two-person

households households

(1) (2) (3) (4)

Real-time feedback (=1) -0.586*** -0.622*** -0.597*** -0.577***

(0.073) (0.079) (0.104) (0.103)

Real-time plus -0.599*** -0.592*** -0.639*** -0.565***

past feedback (=1) (0.080) (0.088) (0.141) (0.090)

Real-time × xit -0.012

(0.077)

Real-time plus 0.073

past feedback × xit (0.074)

Constant 2.625*** 2.627*** 2.649*** 2.617***

(0.067) (0.067) (0.101) (0.090)

t-test: both treatments p = 0.88 p = 0.77 p = 0.92

have the same effect

on the dependent variable

F-test: equality of p = 0.91

treatment effects across

household types

R2 0.441 0.441 0.530 0.381

Obs 45036 45036 16068 28968

Notes. The table displays the main treatment effects on energy use (in kWh), con-

trolling for household and time fixed effects. Standard errors are in parentheses,

adjusted for clustering at the household level. See Equation 1 and 2 for a complete

description of the statistical model. ∗,∗∗ ,∗∗∗ indicate significance at the 10, 5, and

1 percent level, respectively.
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3.2 Margins of adjustment

While we have so far only considered overall energy use, it is also interesting to ask along

what margins individuals adjusted their behavior: Did they cut the shower short? Or reduce

the flow rate of the water? Did they reduce the water temperature? Table 3 provides an

overview of the different margins of adjustment. In these regressions, the constant terms

can directly be interpreted as the mean of the control group. In a first step (panel A), we

calculated the treatment effects separately for the two treatments to verify whether the two

treatments respond along the same margins of adjustment. As the p-values of F-test in Table

3 show, we find no evidence that the two treatments used different margins of adjustment.

As a result, for parsimony, we collapsed the two treatment conditions T1it and T2it into one

treatment indicator in the subsequent analyses, since the two treatments do not only have

the same effect on energy use, but also employ the same means to achieve that reduction

(panel B).
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Table 3: Margins of adjustment

PANEL A Shower time Flow rate Average Number of Total break

(seconds) (l/min) temperature stops in time (s)

(◦C) water flow

Real-time group (T1) -51.60*** -0.140* -0.371** 0.057** 5.90***

(6.39) (0.071) (0.156) (0.028) (1.82)

Real-time + past feedb. (T2) -50.18*** -0.165** -0.260* 0.081*** 2.67

(6.54) (0.069) (0.139) (0.029) (2.10)

Constant 244.38*** 10.998*** 36.204*** 0.530*** 34.23***

(5.92) (0.047) (0.138) (0.028) (1.95)

p-value F-test (T1==T2) 0.84 0.72 0.43 0.45 0.13

PANEL B Shower time Flow rate Average Number of Total break

(seconds) (l/min) temperature stops in time (s)

(◦C) water flow

Treatment (collapsed) -50.90*** -0.152** -0.316** 0.069*** 4.30**

(5.41) (0.061) (0.130) (0.024) (1.65)

Constant 244.38 10.998*** 36.205*** 0.530*** 34.22**

(5.93)*** (0.047) (0.138) (0.028) (1.94)

Implied change in energy use -20.8% -1.4% -1.3% / -1.8%

in % of control group mean

R2 0.412 0.783 0.332 0.369 0.323

Obs 45036 45036 45036 45036 45036

Notes. Difference-in-difference estimates of the treatment effects of real-time feedback on interme-

diate behavioral outcomes. Both experimental conditions are collapsed into one treatment indicator.

Heteroskedasticity-robust standard errors, adjusted for clustering at the household level, in paren-

theses. ∗,∗∗ ,∗∗∗ indicate significance at the 10, 5, and 1 percent level, respectively. The row "Implied

change in energy use in percent of control group mean" designates the change relative to the control

group, holding all other margins constant.
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The results show that by far the largest adjustment comes from cutting the shower short.

The point estimate indicates that showers are cut 51 seconds short (over a baseline duration

of about 4 minutes). We observe only very small reductions in the water flow rate of about 0.1

l/min, with the control group mean being around 11 l/min. We also observe a slight reduction

in the water temperature in the treatment groups of about 0.3 ◦C, and a slight increase in

the duration and number of times the individuals stops the water flow during the shower.

The row "Implied change in energy use in percent of control group mean" contains the effect

of a one-dimensional change along that margin relative to the control group; note that these

margins are not independent and that their effects are not strictly cumulative (e.g., if both

shower duration and flow rate are decreased, the combined effect is smaller than the sum

of the two individual effects, as each already reduces the denominator on which the effect

can act). Thus, overall, the largest part of the observed energy conservation effect comes

from individuals simply cutting the shower short, and only minor changes in other margins

of adjustment such as the flow rate or temperature of the water. The former result is also

interesting in light of increased efforts to equip households with showerheads that restrict

the water flow rate (Ball 2009, Power 2011): our results indicate that individuals are willing

to reduce water consumption in the shower, but they only minimally reduce the flow rate.

In a final analysis, we also investigate whether the number of showers taken over the

study period was not impacted by the treatments. We estimate the following equation

yi = β0 + β1T1i + β2T2i + εi (3)

where the dependent variable yi in this case is the total number of showers of household

i during the study period, and T1 and T2 are binary variables indicating assignment to the

real-time feedback, and real-time plus past feedback treatment, respectively. Table 4 displays

the results. As can be seen, neither treatment has an effect on the total number of showers.

Therefore, the intervention only affects behavior while showering, but not the number of

showers an individual takes. This is important for two reasons: on the one hand, this means

that the consumers do not compensate the reduced consumption per shower by taking more

showers. On the other hand, we find no evidence for a reduced shower frequency, which

could create other negative externalities (from a hygiene point of view).
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Table 4: The treatment effects on the total number of
showers

Household type One-person Two-person

Real-time feedback (=1) 2.131 2.198

(3.754) (5.725)

Real-time plus past 5.030 3.911

information (=1) (3.737) (5.505)

Constant 52.908*** 86.216***

(2.552) (3.989)

R2 0.006 0.001

Obs 296 332

F-test: no impact of the p = 0.40 p = 0.78

treatments on the

number of showers

Notes. Linear regressions of the total number of show-

ers on the treatment conditions. See discussion of

Equation (3) for more details. Heteroskedasticity-

robust standard errors in parentheses. ∗,∗∗ ,∗∗∗ indi-

cate significance at the 10, 5, and 1 percent level, re-

spectively.

3.3 The impact on awareness about resource use

We now examine whether we can replicate the result from earlier studies that feedback does

not improve consumers’ awareness of their resource consumption. Before and after the in-

tervention period, we asked individuals to estimate how much water they use per shower.

The results are visualized in Figure 4. Panel A shows the relationship between actual water

consumption in the pre-intervention phase (measured during the baseline period). As can be

seen, the relationship is positive, but the slope of the fitted regression line is far from 1, as it

would be if individuals had an unbiased estimate of their water use. Thus, before the inter-

vention, most individuals have a rather vague idea of how much water they are using. These
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findings are in line with (Attari 2014) who found that low-users overestimate their use, while

high-users underestimate it. Panel B displays the relationship between actual and estimated

water use after completion of the intervention. As can be seen in the panel, the relationship

has become tighter for the two treatment conditions, but remains rather flat for the control

conditions.

In order to test for this more formally, we estimate one regression models corresponding

to each of the two panels of Figure 4 of the following form:

ỹi = β0 + β1yi + β2T1i + β3T2i + β4T1i · yi + β5T2i · yi + εi (4)

where ỹi is household i’s estimate of its average water use per shower (in liters). The variable

yi is the actual average water use of household i per shower (in liters). As before, the variables

T1i and T2i are binary variables indicating whether a household was exposed to the real-time

information, or real-time and past information treatment, respectively. We also include inter-

actions between the water use yi and the treatment groups. Thus, the coefficients β3 and β4

indicate how the slope with respect to actual water use differs in the two treatment conditions

relative to the control group. Comparing across the pre-intervention and post-intervention

equation allows us to examine whether estimated water use becomes more closely aligned

with actual water use in the two treatment conditions in the post-intervention phase. As

usual, εi represents the error term. We estimated equation (4) for the pre-intervention and

post-intervention separately, but allowed their residuals to be correlated across equations,

using a seemingly-unrelated-equations model.7

Table 5 displays the results. The first column in Table 5 shows that water use in the

baseline period is positively associated with estimated water use, with a coefficient of 0.41,

as seen in the figure. The association is statistically highly significant. The first column

also shows that the relationships are the same across the three experimental conditions in

the pre-intervention phase: both interaction terms are small in absolute magnitude, and not

statistically significant. Turning to the second column of Table 5, we see that this changes

for the post-intervention estimates. The association is still approximately the same for the

control group. However, the two treatment conditions now exhibit a much stronger associa-

tion between actual and estimated water use. In the real-time feedback condition, the slope

increases by 0.62 (to roughly 0.94), and in the real-time plus past feedback condition, the

slope increases by 0.48 (to roughly 0.8), compared to the control group. Both increases are

significant compared to the control group (p < 0.01, as can be seen in the table), and also if

7The SUR model estimates each equation by OLS, but allows an individual’s residual in the pre- and post-
intervention period to be correlated. It takes this into account when testing for differences in coefficients between
the pre- and post-intervention phases.
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we test for significant increases in the interaction terms compared to the pre-intervention es-

timates (p < 0.01 in cross-equation tests for each of the treatments). The substantially tighter

fit between actual and estimated water use can also be seen in the R2’s of the two equations.

While the R2 is only 0.05 in the pre-intervention period, it rises to 0.34 in the post intervention

period.

Thus, in contrast to other studies providing more aggregate, lagged feedback, real-time

feedback increases awareness of resource use. This shows that the feedback gets to the

users and provides a necessary first step for the intervention to reduce salience bias.
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Figure 4: Association between estimated and actual water use per shower before (Panel A)
and after (Panel B) the intervention. Notes. The dashed black line at 45 ◦ represents a perfect
association between estimated and actual water consumption per shower; the orange (treat-
ment groups) and blue (control group) lines display the group-specific fitted regression lines
between estimated and actual water use.
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Table 5: Estimated and actual water use

Measurement period Baseline Intervention

Actual water use 0.406*** 0.320***

(0.123) (0.080)

Water use × real-time 0.024 0.625***

information (0.185) (0.110)

Water use × real-time -0.129 0.482***

and past information (0.170) (0.164)

Real-time information (=1) -0.066 -15.739***

(7.988) (4.709)

Real-time and past 9.375 -12.496**

information (=1) (8.225) (6.046)

Constant 22.261*** 20.694***

(5.163) (4.044)

R2 0.051 0.340

Obs 522 516

Notes. Linear regressions between the estimated and

actual water use in the three experimental condi-

tions. Baseline estimated values were measured be-

fore the smart shower meter was deployed to house-

holds. Post-intervention estimated values were mea-

sured after the devices had been collected from the

households. See discussion of Equation (4) for more

details. Heteroskedasticity-robust standard errors in

parentheses. ∗,∗∗ ,∗∗∗ indicate significance at the 10, 5

and 1 percent level, respectively.
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3.4 Analyses in subgroups

In this subsection, we examine whether the response to real-time feedback differs in sub-

groups. This may help to understand the underlying behavioral mechanisms behind the

large observed treatment effects. We select the variables of interest based on hypotheses

generated in the previous literature.

Previous studies show that households with high baseline use display a larger conser-

vation effect when provided with feedback about their resource consumption (Allcott 2011,

Ferraro and Price 2013, Degen et al. 2013, Allcott and Rogers 2014, Brent et al. 2015). We

therefore include an interaction term of the average resource use, measured during the base-

line phase of the study, with real-time feedback.

Several studies also show that individual attitudes influence the effectiveness of feedback

interventions on resource conservation. In particular, a subject’s innate desire to protect the

environment is often associated with stronger efforts in response to feedback interventions

(Abrahamse et al. 2005, Delmas and Lessem 2014). We use the survey response to an envi-

ronmental attitude question, measured prior to the intervention, as our empirical proxy for

this interaction effect. We also include a proxy for the tendency to quantify behavior as an

interaction term, as the affinity for self-tracking progress towards goals has been shown to

lead to larger behavior change in response to such interventions (Swan 2013).

Furthermore, as personality factors have been found to affect environmental engagement

(Hirsh 2010, Milfont and Sibley 2012) and in particular as informative of behavior change

(Milfont and Sibley 2012), we also interact the treatment effect with the complete set of

personality factors measured by the HEXACO personality inventory (Lee and Ashton 2004).

Moreover, we include interactions with several demographic factors: income, age, and gender

composition of the household. While the interpretation of their potential effect is less obvious,

we include them in our analyses, as previous literature has found significant heterogeneity

in response to similar interventions (Karlin et al. 2015).

We estimate the following model

yit = αi + β1Tit + γ′1zi · Tit + γ2ȳi0 · Tit + δ′1zi · t+ dt + εit (5)

where Tit is an indicator equal to 1 after shower 10 if household i is in either the real-time

or real-time plus past feedback condition. As the two treatments had the same effect on

overall energy use, awareness, and on each of the margins of adjustment, we collapse both

treatments into one. For the same reason, we also do not distinguish between different types

of households. We interact the treatment effect with a vector of personality factors zi in order
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to test the different hypotheses. The variable ȳi0 is the mean per-shower energy consumption

of household i during the baseline period (where none of the devices displayed any feedback

about resource use). We also include interactions between the personality factors zi and

a time (shower) trend. We include these interaction terms in order to account for possible

differences in Hawthorne effects that may be related to personality differences, and create

characteristic-specific trends. As before, we include household fixed effects αi and shower

fixed effects dt and adjust the standard errors for clustering at the household level.

Table 6 shows the results for the coefficient estimates of those interaction effects. In Table

7, we convert the treatment effects into conservation effects by reversing their sign, as we find

that this eases the interpretation of the interaction effects. The table shows the coefficient

estimates of the most interesting conservation effects and the predicted effects for the top and

bottom quintile in the distribution of each trait.

We find a significant interaction effect of the treatment with baseline use. As earlier studies

have found, high-baseline users display a larger conservation effect (Allcott 2011, Ferraro

and Price 2013). The magnitude of the interaction effect is important: a one-kWh increase

in baseline use increases the treatment effect by approximately 0.32 kWh, i.e. by almost a

third of the baseline difference. Table 7 shows that while the treatment effect for the average

household is 0.62 kWh, the treatment effect on the highest quintile of baseline users is 1.47

kWh.

The results also show that attitudes towards the environment significantly moderate the

treatment effect. The 20 percent with the weakest intent of preserving the environment dis-

play a conservation effect of 0.49 kWh per shower. Bearing in mind that our sample is

less environmentally friendly than the average population in Switzerland, that figure is still

remarkably high. A potential explanation could be that once the device is installed, the feed-

back is automatically visible, without requiring the user to take any action. As Schultz et al.

(2014) argue, individuals who do not have strong pre-existing attitudes about a topic may be

persuaded by messages that are easily accessible. The top quintile conserve 0.74 kWh per

shower – an almost 40% stronger treatment effect. Similarly, our measures of an individual’s

tendency to quantify progress toward goals strongly moderates the treatment effect. Moving

from the bottom to the top quintile in that trait increases the treatment effect by 0.24 kWh.

As Table 6 shows, none of the interactions with the sociodemographic variables (income,

age, and gender composition of the household) attains conventional levels of significance and

the point estimates of the coefficients are relatively small in magnitude. Regarding personality

factors, higher conscientiousness slightly reduces the conservation effect. While the interac-

tion is only marginally significant, a potential interpretation could be that the intervention
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is more helpful for individuals who are less self-disciplined in following through their good

intentions (Packer et al. 2013). In contrast to Milfont and Sibley (2012), who state that per-

sonality differences might be informative in particular for changes in environmental behavior,

none of the other personality factors moderates the treatment effect in our study.

Overall, the interactions with the individual preference measures are easily reconciled with

previous theoretical reasoning and evidence: stronger motivation to protect the environment,

and stronger affinity to quantification lead to larger behavioral changes in response to real-

time feedback. In line with that reasoning, a common interpretation of the strong interaction

of the treatment effect with baseline use is that high-users have more slack in consump-

tion and therefore find it easier to cut down their energy use. This interpretation also hews

closely to our hypothesized role of salience bias in resource consumption: salience bias may

be the source of (at least part of) the slack that increases baseline consumption, and real-time

feedback may help these individuals to regain control over their choices, leading to a larger

conservation effect.
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Table 6: Interaction effects of the treatment with
household characteristics

(1)

Treatment Effect (Tit) -0.625***

(0.062)

Tit × ȳ0 -0.308***

(0.071)

Tit × environmental attitude -0.160**

(0.081)

Tit × quantifying goal progress -0.119**

(0.060)

Tit × fraction female in household 0.148

(0.134)

Tit × age 0.030

(0.052)

Tit × household income 0.011

(0.014)

Tit × conscientiousness 0.207*

(0.107)

Tit × emotionality 0.025

(0.089)

Tit × honesty -0.031

(0.074)

Tit × extroversion 0.057

(0.079)

Tit × agreeableness -0.034

(0.073)

Tit × openness -0.003

(0.078)

Constant 2.497***

(0.078)

F-test: significance of interactions p = 0.02

with environmental attitude and

tendency to quantify.

R2 0.445

Obs 29718

Notes. Treatment effects on energy use (kWh)

depending on a range of household characteris-

tics. The regressions control for household and

time fixed effects, as well as time (shower) trends

interacted with characteristics, as specified in

equation (5). Standard errors are in parentheses,

adjusted for clustering at the household level.

∗,∗∗ ,∗∗∗ indicate significance at the 10, 5 and 1

percent level, respectively.
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4 Discussion and conclusion

Overall, our study shows that real-time feedback on a specific behavior can induce large

behavioral changes. We observe a 22% reduction in the energy consumption for the target

behavior, which translates into 5% of the participants’ household energy use. Strikingly, the

full effect unfolds immediately from the onset of the intervention and shows no sign of decay

during the study. The quantitative savings effects, extrapolated to a year for one person,

are substantial: an individual (showering once a day) saves 215 kWh of energy, 3,500 liters

of water, and avoids 47 kg of carbon emissions8 (see SI Section 3). This is five times as

much energy and eleven times as much carbon dioxide as with interventions providing broad

feedback about electricity use to the same population of participants (see SI Section 5 and

(Degen et al. 2013)).

Thus, our research suggests a novel strategy for behavioral interventions in resource con-

servation: the focus on a specific behavior and real-time feedback can yield a far greater effect

than the provision of broader feedback (e.g., past household electricity or water usage). In

part, this is due to a more persistent change in behavior in response to real-time feedback.

The technology-based intervention makes it possible to provide feedback on a daily basis, as

the target behavior takes place. We clearly find no evidence for a decay of the effect within

the first two months. By contrast, with periodic home-energy reports, the conservation effect

tapers off within days of the arrival of the feedback letter (Allcott and Rogers 2014), as can

be observed with many other aspirational behaviors (Dai et al. 2014). Information systems

make it possible to provide feedback on a more regular and even daily basis. Yet, the key to

the large savings in our study does not appear to be a question of repetition or frequency –

after all, the full effect unfolds from the onset of the intervention. Rather, we provide concrete

information relevant to decision-making processes in real time, while individuals engage in a

particular behavior. Our interpretation is that real-time feedback on a specific behavior ad-

dresses salience bias as the root cause, by allowing individuals to align their behavior more

closely with their deeply ingrained preferences.

For the scalability of this kind technology-enabled behavioral approach, it is important to

exemplarily examine the cost-effectiveness of our intervention.9 From a household’s perspec-

tive, in addition to being better able to choose resource use according to their preferences,

the intervention also offers substantial cost savings over a three-year period, which we as-

8The C02 reduction is calculated based on the Swiss energy mix for water heating. With the energy production
mix of the U.S., 82 kg of CO2 would be avoided per person per year due to a higher carbon intensity of electricity
generation and a higher share of electric water heaters in the U.S.

9We do not attempt to perform a full cost-benefit analysis that quantifies the impact of the intervention on overall
welfare. This would require us to identify and estimate parameters in the household utility functions, which is
beyond the scope of this paper.
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sume as the device’s deterministic lifetime. For the average Swiss 2.1 person household,

the reduction in energy and water use amounts to savings of USD 87 per year. Thus, the

devices breaks even after 9.3 months. Over the assumed lifetime of three years, this creates

a net benefit of USD 19310 By contrast, in-home displays providing feedback on electricity

consumption and home-energy reports led to a reduction of 0.2 kWh per day among the same

pool of households, or 86 kWh per year (Degen et al. 2013). Those savings would reduce the

households’ electricity bill by USD 51 over a three-year period, and fall far short of covering

the costs of the smart meter and of the in-home display (which are substantially higher and

clearly do not result in a net benefit). Thus, technology investments that effectively improve

behavioral control over resource use can have large monetary payoffs to households, and to

a much larger extent than other forms of resource-conservation interventions in comparable

households.

A second perspective for cost effectiveness is that of a policy maker, comparing the costs

of different policies to reduce, e.g., carbon emissions, as is done in (Allcott and Mullainathan

2010). As Allcott and Mullainathan (2010) show, serving a household with a typical home-

energy report in the US costs roughly USD 7.5 per year, generates on average electricity

savings of 303 kWh per household, as well as a reduction in CO2 of 122 kg. Allcott and

Mullainathan (2010) assume a production price of 0.08 USD per kWh. Thus, from the policy

maker’s perspective, the intervention reduces CO2 and saves costs at the same time, yield-

ing cost savings of 162 dollars per ton of CO2 abated. By contrast, many investments in

technology upgrades to abate CO2, yield high costs per ton abated, not cost savings (McK-

insey&Company 2009). In comparing these results to our intervention, we assume that the

price of the device would be lower in the case of a large-scale rollout, and set it at USD 40.

This results in a substantially higher cost than the home-energy reports in Allcott and Mul-

lainathan (2010). However, because of the large conservation gains in the target behavior,

the intervention saves 452 kWh per household, and 97 kg of CO2 per year – even though

our households have much lower baseline energy use and lower CO2 intensity than the av-

erage household in the US in Allcott and Mullainathan’s calculations. We assume the same

production price of 8 cents per kWh of energy and obtain even larger savings per ton of CO2

abated of approximately USD 234.11

Two further features of our results suggest that behavior-specific real-time feedback is

10These calculations are based on the energy mix of households in Switzerland, at current resource prices. See SI
Section 4 for more details on the calculations.

11This number may, at first sound perplexing, given the higher annual cost of the intervention (2.9 cent per kWh)
compared to Allcott and Mullainathan (2010) (2.5 ct per kWh). However, at a marginal production price of 8 cents
per kWh, every device deployed delivers net savings (5.1 cent per kWh) to the policy maker. Because of the lower CO2
intensity of the Swiss energy mix (both for water heating and for electricity), more households need to be outfitted
with the device to abate one ton of CO2, each delivering additional savings to the policy maker. For details and
calculations for the U.S. mix for electricity and water heating, please see SI Section 3.
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a desirable policy intervention. First, the approach shows some of the efficiency properties

similar to price incentives: individuals with a large benefit from resource conservation (as

measured by their environmental preference) respond more strongly to the treatment, as do

individuals with low costs of processing real-time feedback (as measured by the tendency

to quantify). Thus, the intervention causes stronger treatment effects for individuals with

higher benefits/lower costs of adjustment. This can also be seen in the large interaction ef-

fect with baseline use: our intervention causes the largest conservation effects in individuals

with a high baseline use without any additional prompting of such behavior. High baseline

users reduce their consumption by close to 30 percent, thus even responding more strongly

in relative terms than the average participant. By analogy, price incentives also tend to trig-

ger stronger responses among individuals with lower costs of changing their behavior, a key

efficiency property highlighted in almost every economics textbook (see, e.g. Frank and Glass

1991). By contrast, many regulatory interventions would not allow for such individual dif-

ferences in costs and benefits to affect behavior: for example, imposing showerheads that

reduce the water flow forces individuals to shower with lower water pressure (far below what

the individuals in our study choose). Flow restrictors force individuals into a different pat-

tern of consumption that causes additional costs to them, such as spending more time in the

shower, thus making such interventions less desirable. Second, real-time feedback causes

a large conservation effect even for individuals who show little inclination to engage in en-

vironmental conservation on their own. While a stronger desire to protect the environment

leads to a larger conservation effect, the conservation effect is still substantial (0.51 kWh, see

Table 6) even for the 20 percent of individuals of our sample who care the least about the

environment.12

Similar interventions could also be designed to address salience bias in other areas of

resource consumption: for instance, the cost and environmental impact of driving could be

displayed in real time from the start of each trip, or the impact of current driving style on ve-

hicle range, gasoline costs, or material strain. In practice, several car models like the Toyota

Prius already provide feedback to drivers on basic sustainability metrics on the car dash-

board. There is, however, a lack of studies that evaluate the effectiveness of these measures

in the field (Young et al. 2011).

An important question in this context is, of course, to what extent similarly large savings

could be expected from similar feedback interventions in other domains. One could argue

that showering is particularly prone to salience bias, or a more salient daily activity than

other energy-consuming behaviors, or that individuals have a higher degree of control on

12Recall that on average, our sample is less environmentally friendly than the average population in Switzerland.

33



their energy consumption in the shower than, e.g., on the after-purchase energy use of their

refrigerator. On the other hand, more than 70% of energy used by individuals and households

is dedicated to only four categories: private vehicles, space heating, water heating, and air

conditioning (Gardner and Stern 2008). All of them involve highly visible behaviors with

a high degree of user control. For instance, both driving behavior (Evans 1979) and the

adjustment of thermostat settings (Kleiminger et al. 2014) have a large influence on fuel

consumption. Devising similarly concrete feedback measures could also facilitate behavior

change in these high impact domains. Moreover, these measures could help individuals

to identify high-impact domains and to overcome mental barriers to invest in equipment

upgrades (e.g., buying a more fuel-efficient vehicle).

Beyond resource conservation, real-time feedback may also hold promise for many other

domains where salience bias potentially distorts choices. Gabaix and Laibson (2006) show

that when individuals do not pay attention to all attributes of a product, this gives firms

incentives to use pricing schemes that lead to inefficient consumption. In the terminology

of Gabaix and Laibson (2006), our approach "unshrouds" an obscure product dimension

and helps individuals make more informed choices. Examples from four different domains

illustrate the broad range of potential applications. Jessoe and Rapson (2014) show that

real-time feedback on electricity consumption helps consumers take advantage of time-of-use

pricing: consumers who receive an in-home display with real-time feedback of their electricity

consumption shift significantly more demand from peak to low price hours than consumers

who only receive a notification of the price increase.

Another domain of application might be caloric intake: even though nutritional informa-

tion is visible on the packaging of many goods, the caloric intake over the course of a day is

difficult to keep track of. Bollinger et al. (2010) show that displaying caloric information in

restaurants reduces caloric intake by individuals. Thus, there is strong reason to believe that

real-time feedback about caloric intake throughout the day would be helpful to individuals

suffering from salience bias. One could devise clever mobile apps that allow the individual to

assess the caloric intake of food rations in real time and over the course of the day. Again,

real-time feedback could make demand for food substantially more elastic with respect to

caloric intake.

In the domain of privacy protection, more salient feedback about the implications of one’s

choices may also be helpful. Affect-eliciting web content has been shown to bias risk and

benefit perceptions towards increased information disclosure, inducing individuals to over-

leap deliberate decision-making processes (Kehr et al. 2015, Kehr 2015). Salience of privacy

implications can mitigate this bias and thus reduce the adoption of services that contradict
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individuals’ general privacy concerns.

Already today, the ubiquity of smart phones and sensors enables the collection of fine-

grained data over vast periods of time and to measure behaviors that so far have escaped us.

In today’s newly registered cars, the information on the current consumption is already con-

stantly being measured. New heating systems have the capability to store fuel consumption

data. The ongoing digitalization of the energy sector with the advent of smart grid technolo-

gies and smart meter infrastructures, in combination with ambient displays, smart watches

and the like, will give rise to many real-time applications and enable new services, business

models, and additional channels to reach consumers. In general, industry experts expect

1 trillion sensors to be connected to the Internet by 2022, enabling services ranging from

connected homes and cars to wearable Internet, implantable technologies, and smart cities

(World Economic Forum 2015). The "integration of the physical and digital worlds through

networked sensors, actuators, embedded hardware" (World Economic Forum 2015, p. 4) will

open up even more possibilities to devise behavioral interventions that address salience in the

future. For instance, workers could be warned of safety risks in their immediate environment

(e.g., using wristband vibrations or google glass visualizations). The findings presented in this

article will hopefully motivate researcher and car manufacturers alike to use the information

in an effective way.

Given the large number of potential applications, an important question in this context

is how the effectiveness of real-time feedback is affected if it were used more widely. It is

possible that our effects are so strong precisely because real-time feedback is not ubiquitous,

and therefore introducing it for one behavior may have particularly strong effects. Evidence

from financial markets suggests that on days of fast arrival of news, investors tend to react

less to each piece of news (Hirshleifer et al. 2009, 2011). Similarly, if real-time feedback

on many behaviors became available, it is possible that its effectiveness would decrease, as

each channel of feedback may receive less attention than was the case in our intervention.

One can also conceive that individuals end up being overwhelmed or annoyed if real-time

feedback becomes ubiquitous. Therefore, it might be necessary both to prioritize application

domains by their relevance to the individual and to focus on the high-impact behaviors in

those domains. While our application shows that real-time feedback enables individuals to

implement large behavioral changes, and that the resulting behavior seems more in line with

their innate preferences, further research is needed to understand the optimal use of real-

time feedback in multiple domains.
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